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Abstract. Helioseismology has discovered a thin layer beneath the solar surface where the rotation rate

increases rapidly with depth. The normalized rotational shear in the upper 10 Mm of the layer is constant

with latitude. Differential rotation theory explains such a rotational state by a radial-type anisotropy of

the near-surface convection and a short correlation time of convective turbulence compared to the rotation

period. The shear layer is the main driver of the global meridional circulation.
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1. Introduction

Helioseismology has detected a steep increase in the rotation rate with depth just below the

surface (Thompson et al. 1996; Schou et al. 1998). The subsurface radial shear exceeds the

latitudinal shear seen on the solar surface. The potential importance of the large differential

rotation in the near-surface shear layer (NSSL) for the solar dynamo (Brandenburg 2005; Pipin

and Kosovichev 2011) has triggered a discussion on the origin of the layer (see e.g. Kitchatinov

2013; Hotta et al. 2015; Gunderson and Bhattacharjee 2019; Jha and Choudhuri 2021). The

discussion has not led to a consensus yet.

It is noteworthy that although the near-surface shear varies with latitude, it varies coherently

with the rotation rate, so that the normalised shear

r

Ω

∂ Ω

∂ r
≃−1 (1)

in the upper 10 Mm of the solar convection zone is essentially constant (Barekat et al. 2014).

An adequate theory should reproduce this remarkable property.

The rotational shear proportional to the rotation rate is a robust prediction of differential

rotation theory for the case of a short correlation time of the convective turbulence compared

to the rotation period (Rüdiger 1989). The upper 10 Mm of the NSSL belong to this case. The

constant normalised shear then follows from the standard stress-free condition for the upper

boundary.

2. Differential rotation theory for NSSL

Thermal convection is driven by buoyancy forces pointing up or down the radius. Convective

turbulence can therefore be anisotropic, with different intensities of radial and horizontal mix-

ing. Lebedinsky (1941) was probably the first to point out that the influence of anisotropic

turbulence on global rotation is not limited to the smoothing of rotational inhomogeneity by

turbulent viscosity. Anisotropy allows the turbulence to generate differential rotation through

non-diffusive fluxes of angular momentum (see Kitchatinov 2005, for pictorial explanation).

The Lebedinsky effect is now known as the Λ-effect (Rüdiger 1989, p.37).

The turbulent transport of momentum is accounted for in the mean field hydrodynamics

by the Reynolds stress, Ri j =−ρ〈uiu j〉, where the angular brackets mean averaging, ρ is the
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density and u is the turbulent velocity. The differential rotation theory distinguishes two parts

in the stress tensor,

Ri j = Rν
i j + RΛ

i j, (2)

which are responsible for the turbulent viscosity and the Λ-effect.

Figure 1. Depth profile of the Coriolis number (3) in the NSSL. The solid line shows the profile for the
depth range where Barekat et al. (2014) found the constant shear of Eq. (1). The profile for greater depths
is shown dashed. The star indicates an estimate for the solar granulation.

The key parameter of the theory is the dimensionless factor

Ω∗ = 2τΩ (3)

of the Coriolis force in the normalised equation of motion; τ is the convective turnover time.

The Coriolis number (3) measures the intensity of the interaction between convection and rota-

tion. The main difficulty with the differential rotation theory was a large value of the Coriolis

number in the depth of the solar/stellar convection zone. Therefore, the theory has to be non-

linear in this number (Rüdiger et al. 2013). However, this difficulty does not however apply

to the depth range where Barekat et al. (2014) found the constant normalised shear of Eq. (1).

Figure 1 shows small Coriolis number for these depths.

The total depth of the NSSL is conventionally assumed to be about 30 Mm. The radial shear

changes sign around this depth (Schou et al. 1998). The shear value decreases and the relation

(1) is violated as this depth is approached (Komm 2022). It is a matter of definition whether the

depths near 30 Mm, where the radial shear is no longer large compared to the latitudinal shear,

should be assigned to the NSSL. This paper focuses on the upper 10 Mm of the convection

zone where the relation (1) constrains possible explanations of the NSSL.

A further complication to the theory is that not only the Reynolds stress but also the merid-

ional flow can also cause differential rotation. However, the meridional flow does not enter the

stress-free boundary condition,

Rrφ = RΛ
rφ + Rν

rφ = 0 at r = R⊙, (4)

which controls the surface shear (Kitchatinov 2013).

The smallness of the Coriolis number and the condition (4) simplify matters to such an

extent that the constancy of the normalised shear with latitude can be proved without address-

ing any specific approximation of mean-field theory. Since the dependence on angular velocity

enters via the Coriolis number, the Reynolds stress can be linearised in angular velocity. The
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general structure for the real RΛ
i j tensor linear in pseudo-vector Ω reads

RΛ
i j =−ρνΛ

(

r̂iε jkl + r̂ jεikl

)

r̂kΩl , (5)

where r̂ = r/r is the radial unit vector, νΛ is a yet indefinite latitude-independent constant,

ε jkl is the fully antisymmetric unit tensor and repetition of subscripts means summation. The

viscous part of the Reynolds stress is given by the viscosity tensor Ni jkl

Rν
i j = ρNi jkl(∇lVk), (6)

where V is the large-scale velocity, which includes rotation and the meridional circulation.

General expression for the viscosity tensor in the case of horizontally isotropic turbulence

(〈u2
φ 〉= 〈u2

θ 〉 6= 〈u2
r 〉) is

Ni jkl = ν1

(

δikδ jl + δ jkδil

)

+ ν2δi jδkl + ν3

(

δik r̂ j r̂l + δ jkr̂ir̂l

)

+ ν4

(

δil r̂ j r̂k + δ jl r̂ir̂k

)

+ ν5δi j r̂k r̂l + ν6δkl r̂ir̂ j + ν7r̂ir̂ j r̂k r̂l . (7)

Substituting Eqs. (5-7) into Eq. (4) gives the expression for the normalised shear

r

Ω

∂ Ω

∂ r
=−

νΛ

ν1 + ν3
(8)

in terms of the eddy transport coefficients for the case of a horizontally isotropic background

turbulence and small Coriolis number.

The normalised shear (8) is constant with latitude. This constancy is therefore a robust result

of mean-field theory independent of any particular theoretical tool used to derive the shear.

However, the value of the surface shear depends on the - necessarily approximate - theoretical

tool used for the evaluation. Derivations with the quasi-linear approximation give (Kitchatinov

2023)

r

Ω

∂ Ω

∂ r
=

〈u2
h〉

〈u2
r 〉

− 2, (9)

where u2
h = u2

φ + u2
θ is the intensity of horizontal mixing. Shear is negative for anisotropy of

radial type, 〈u2
r 〉> 〈u2

φ 〉= 〈u2
θ 〉, as it should be (Lebedinsky 1941).

Equation (9) reproduces the seismically detected shear (1) for 〈u2
h〉/〈u

2
r 〉= 1. This intensity

ratio is in agreement with the numerical experiment on the NSSL by Kitiashvili et al. (2023).

The anisotropy parameter AV of their fig. 4 corresponds to 〈u2
r 〉 ≃ 〈u2

h〉 within the convective

zone.

3. NSSL and meridional flow

The global meridional flow is an important component of the flux transport dynamo models

for solar activity. The importance of the NSSL for the solar dynamo can be mediated by the

NSSL relation to the meridional flow. The flow is currently understood to result from a slight

imbalance between strong centrifugal and baroclinic drivers of the flow (see review by Hazra

et al. 2023, for further details).

The profiles of the two drivers and the resulting meridional flow computed with a mean-field

hydrodynamical model are shown in Fig. 2. The two drivers are almost balanced in the bulk

of the convection zone. Close to the boundaries, a complete set of the boundary conditions

does not allow the additional condition of the thermo-rotational balance to be satisfied. The

increase of the centrifugal driving term near the boundaries violates the balance. Accordingly,

the meridional flow of Fig. 2 reaches its maximum velocity at the boundaries and decreases

inside the convection zone, in agreement with the seismological detections by Rajaguru and

Antia (2015) and Gizon et al. (2020). The meridional flow is generated in the NSSL.
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Figure 2. Centrifugal and baroclinic drivers of the meridional flow and their sum (left) and the resulting
meridional flow (right) as functions of radius for the 45◦ latitude according to the mean-field model of
Kitchatinov and Olemskoy (2011).

4. Conclusions

The NSSL is a consequence of the radial type of anisotropy of the near-surface convection,

and the condition (4) that the external azimuthal force is zero. The constancy of the normalised

surface shear (1) with latitude is a consequence of the short convective turnover time relative

to the rotation period in the depth range where the constancy was found.

Global meridional flow is excited in the boundary layers near the top and bottom of the

convection zone. The large rotational shear in the NSSL drives the meridional circulation by

its non-conservative centrifugal force.
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